
ARDUINO IN 6 CHALLENGES

Development: Marine Joumard
in collaboration with Frédéric Bouquet and Julien Bobroff,

team La Physique Autrement, Université Paris-Sud

A collection of sheets to understand how to use Arduino
and to be able to run original projects:

incredible machines, take measurements.
The only limit is your imagination.

CHALLENGE TOOL KNOWLEDGE

Six “Challenge” sheets to discover the
essentials of Arduino boards

“Knowledge” sheets to
expand on the basic concepts

“Tool” sheets to help you get to
know the equipment

The images of the circuits were created with the open-source software Fritzing

— find it online at: www.opentp.fr —

— Team La Physique Autrement : www.physicsreimagined.com —

Test your board

13 12 11 10

9 8 7 6 5 4 3 2

L

5V A
0

ANALOG IN

A
R

E
F

1

G
N

D

TX
RX

R
E

S
E

T

3V
3

A
1

A
2

A
3

A
4

A
5

V
IN

G
N

D

G
N

D

DIGITAL (PWM=)

Arduino TM

IO
R

E
F

IC
S

P

ICSP2

ON

POWER

01
TX

0

R
X

0RESET

The Uno board

“Arduino” is a generic term that covers different microcontrollers. Here, we are using
the Arduino board Uno which is the most commonly used today although the content
presented here is equally valid for the majority of other boards, for example the MEGA
Arduino board. The reference site www.arduino.cc is a good starting point to discover the
world of Arduino

The Arduino Uno board is not the most powerful microcontroller but its architecture
is open-source and its entire philosophy is based on the free model. This board is
a microcontroller, which is a system that resembles a computer: it has memory, a
microprocessor and interfaces with the outside world. A simple search for the words
“Arduino projects” would quickly show the diversity of what can be done using an
Arduino board: robots, clocks and even home automation.

External power supply connector

USB connector

Digital ports

Test light diode

Analog inputs
Voltages references

 Serial communication lights

Power light

1

ASSOCIATED SHEETS

THE ARDUINO BOARD
Understand your board

KNOWLEDGE

www.opentp.fr « la physique autrement », Université Paris Saclay

KNOWLEDGE  —  THE ARDUINO BOARD

You should avoid connecting two ports that produce different voltages and avoid voltages
that are too high:

 – Never connect a digital output to ground directly;
 – Never connect two digital outputs directly;
 – Carefully check the polarity of an external power supply before switching on (or by

checking with a multimeter before connecting);
 – Never send voltage to fixed output ports (they are marked with 5V, 3V3 and GND);
 – Never send more than 5.5 V into an input whether it is analogue or digital;
 – Never draw more than 40 mA from a single port and never draw more than 200mA

overall.

If you have to connect an output to ground (between port 13 and GND for example), your
circuit must contain a resistor of more than 125 Ω, which corresponds to a current of
40 mA. A resistance of 200 Ω is preferable – that is to say a current of 25 mA – to leave a
security margin.

External power supply 7 – 12 V: this power supply is useful only if the board is not linked
to a computer using a USB cable. It allows nomadic use of the board without a computer.
Digital ports 2 to 13: these ports can be used as input in order to read voltage, or as
outputs to produce voltage. They only accept two values, 0 or 5 volts (see sheets “digital
inputs” and “digital outputs”).
Ports 0 and 1 are used for serial communication with a computer using a USB cable. It is
best to avoid using them in your projects.
Pseudo-analog outputs: they are marked with the symbol ~ and can be used as PWM
output to create intermediary voltage between 0 and 5 volts. See “PWM outputs” sheet).
Analog inputs: the ports A0 to A5 can measure electric voltage from between 0 and 5
volts (they cannot create voltage however).
Fixed voltage outputs: these ports create fixed voltage:

 – Port 5V creates a voltage of 5 volts;
 – Port 3V3 creates a voltage of 3.3 volts;
 – The GND ports are connected to ground (0 volts).

Test light diode: it is piloted by the digital port 13 configured as output and allows one to
rapidly test the board (see “test your board” sheet).
USB connector: it is used to connect to your computer using a suitable cable. It allows
communication with the board and also provides power for it to function.
Power light: it switches on when the board is powered.
Serial communication lights: they light up when the board and the computer
communicate.

All the voltages are measured based on the GND port. “Do not exceed a voltage of 5.5 V on
a port” means “do not exceed a difference in voltage of 5.5 V between the port and the port
GND”.

Some precautions

2
www.opentp.fr « la physique autrement », Université Paris Saclay

The behavior of the microcontroller is determined by its program. In practice, the user
writes this program using software (IDE) installed on a computer. This program is then
compiled and uploaded into the microcontroller via a USB cable. Many different types
of software can be used as IDE although here, we use the Arduino software that can be
downloaded on the reference site www.arduino.cc (see the “Test your board” Challenge
sheet to install the software).

“Upload” icon

“Compile” icon

Programming
window

Compiler message
window

Indicates which Arduino board
and COM port are in use

1

Test your board

ASSOCIATED SHEETS

ARDUINO IDE SOFTWARE
Indispensable to be able to program your board

KNOWLEDGE

This software is open and free. The screenshots are out of date, no doubt, as the software
is constantly evolving. You will, nonetheless, find these main elements:

Menus to access different settings (File, Edit …).

Icons allowing shortcuts. The icon “upload” is particularly important as it sends the
program to the Arduino board.

A programming window: it is here for you to write the program that will control the
Arduino board once it is uploaded.

A message window: when messages in orange appear, it’s because there is a problem! In
general it is due to a badly written program but sometimes it is due to a faulty connection
with the board.

www.opentp.fr « la physique autrement », Université Paris Saclay

KNOWLEDGE  —  ARDUINO IDE SOFTWARE

You just have to type the code into the programming window, compile it and upload it to
the program on the Arduino board by clicking on the corresponding icons.

Compile: The program is transformed into comprehensible language by the
microcontroller: programming errors are indicated at this step.

Upload: The program is sent to the board, which must be connected to the computer
using a USB cable (the serial communication lights should blink).

The program is thus installed on the microcontroller and executes (see the
“Programming” sheet for information on the different ways of writing a program). If an
external power supply is connected to the board, the USB cable can be disconnected.

2

Useful tools

Here are some functionalities of this software that are useful to know:

Tools menu, Board type: the type of board selected must correspond to your board. If it is
not the case, the compilation will not be adapted.

Tools menu, Port: the port selected must correspond to the one to which your board is
connected. If it is not the case, uploading will not be possible.

File menu, Examples: many examples are available. Study them and get inspired!
Tools menu, Serial monitor: allows one to receive messages that the Arduino board
sends to the serial port. Useful for debugging programs.

Minimum programming requirements

The programs of the Arduino boards must always contain two particular procedures:
 – The setup() procedure, which is executed once at the beginning of the program;
 – The loop() procedure which is executed continuously afterwards.

Here is the minimum program that the Arduino board can accept::

This program does not give any instructions to the microcontroller. The programming
sheet provides the most useful instructions but the site www.arduino.cc provides all the
instructions that the board can understand as well as numerous examples (“Reference”
tab on the site). We advise you to consult this site in case of need.

void setup() { // beginning of setup. The text after // is ignored
 // This procedure is executed only once
 // The user can insert commands
} // end of setup

void loop() { // start of loop
 // This loop will execute for ever
 // after the execution of setup
} // end of loop

www.opentp.fr « la physique autrement », Université Paris Saclay

The input/output (I/O – input/output) represents the way in which the Arduino board
interacts with the outside world. The outputs are controlled by the board allowing the
microcontroller program to trigger actions (switch on or switch off a LED, a ventilator or a
motor). The inputs are read by the microcontroller which allows it to become aware of the
state of the system that it is linked to.

Outputs are voltage sources and are controlled by the board.
Inputs are voltmeters and their measurements are read by the board.

There are two types of I/O: digital I/Os, and analog I/Os.

1

The Arduino board

ASSOCIATED SHEETS

INPUTS & OUTPUTS
Understand how the board interacts with

the outside world

KNOWLEDGE

13 12 11 10

9 8 7 6 5 4 3 2

L

5V A
0

ANALOG IN

A
R

E
F

1

G
N

D

TX
RX

R
E

S
E

T

3V
3

A
1

A
2

A
3

A
4

A
5

V
IN

G
N

D

G
N

D

DIGITAL (PWM=)

Arduino TM

IO
R

E
F

IC
S

P

ICSP2

ON

POWER

01
TX

0

R
X

0RESET

Digital ports: digital inputs
and digital outputs, pseudo
analog outputs

Analog inputs. 1

www.opentp.fr « la physique autrement », Université Paris Saclay

KNOWLEDGE  —  INPUTS & OUTPUTS

INPUTS / DIGITAL OUTPUTS

PSEUDO-ANALOG OUTPUTS

ANALOG INPUTS

The digital inputs / digital outputs can only take two values, the value LOW (that is to say
GND, zero volts), and the value HIGH (that is to say 5 volts). The value of a digital port can
therefore be coded on one bit, 0 or 1, true or false.

The Arduino board is comprised of 14 digital ports (named DIGITAL on the board),
numbered 0 to 13. Each of the ports can be declared as being inputs or outputs in the
microcontroller program (see “digital outputs” and digital inputs” sheets).

The Arduino board does not have a true analog output capable of producing voltage of an
arbitrary value chosen by the user. Certain digital ports however can simulate an analog
output by using the PWM (Pulse Width Modulation) technique: it concerns ports 3, 5, 6, 9,
10 and 11 (indicated using a ~ on the board). These ports can simulate a voltage between
0 and 5 volts by switching rapidly between LOW (0 V) and HIGH (5 V). The average voltage
value then depends on the time spent in the LOW state compared to the time spent in the
HIGH stare, all controlled by the board (see “PWM output” sheet).

An analog input is a kind of voltmeter: the board reads the voltage that is applied to
the port. However, the microcontroller only works with numbers: you must therefore
transform the applied voltage into a numerical value. It is the work of the analog/digital
converter, called “ADC” (see “Analog inputs” sheet.)

13 12 11 10

9 8 7 6 5 4 3 2

L

5V A
0

ANALOG IN

A
R

E
F

1

G
N

D

TX
RX

R
E

S
E

T

3V
3

A
1

A
2

A
3

A
4

A
5

V
IN

G
N

D

G
N

D

DIGITAL (PWM=)

Arduino TM

IO
R

E
F

IC
S

P

ICSP2

ON

POWER

01
TX

0

R
X

0RESET

13 12 11 10

9 8 7 6 5 4 3 2

L
5V A

0

ANALOG IN

A
R

E
F

1

G
N

D

TX
RX

R
E

S
E

T

3V
3

A
1

A
2

A
3

A
4

A
5

V
IN

G
N

D

G
N

D

DIGITAL (PWM=)

Arduino TM

IO
R

E
F

IC
S

P

ICSP2

ON

POWER

01
TX

0

R
X

0RESET

2
www.opentp.fr « la physique autrement », Université Paris Saclay

A digital output is a pilotable source of voltage that can only deliver two values LOW
(~ GND, 0 V), and HIGH value (~ 5 V).

The Arduino board UNO contains 14 digital ports (called DIGITAL on the board), numbered
from 0 to 13. Each of these ports can be declared as being an output in the microcontroller
program.
The ports 0 and 1 are reserved for serial communication. You must not use them for
anything else.
The port GND is the ground of the board (0 V).
The port 13 is connected to the test LED “L” on the board: when this output is in the HIGH
state, the test LED is switched on, in the LOW state, it is switched off.

1

Inputs & Outputs
Light up a LED

ASSOCIATED SHEETS

DIGITAL OUTPUTS
How the Arduino board can control

a voltage of 5 volts

KNOWLEDGE

13 12 11 10

9 8 7 6 5 4 3 2

L

5V A
0

ANALOG IN

A
R

E
F

1

G
N

D

TX
RX

R
E

S
E

T

3V
3

A
1

A
2

A
3

A
4

A
5

V
IN

G
N

D

G
N

D

DIGITAL (PWM=)

Arduino TM

IO
R

E
F

IC
S

P
ICSP2

ON

POWER

01
TX

0

R
X

0RESET

The digital ports 2 à 13 of the board can be used as outputs. If a port is declared as
output, it then behaves as a provider of voltage the value of which is controlled by the
microcontroller, either 0 or 5 volts.

Be careful, the current that a digital port can deliver as output is limited to 40 mA:
drawing more can damage the board! This type of situation can happen if a port, declared
as output, is directly linked to ground (port GND) with a weak resistance (a wire), and
the program switches the output to HIGH (5 V). The opposite is also dangerous (a digital
output linked to a 5 V port toggled onto the LOW value). Check the value of the current
that flows in your circuits!

www.opentp.fr « la physique autrement », Université Paris Saclay

KNOWLEDGE  —  DIGITAL OUTPUTS

Usage examples

Programming

Here is a simple setup to control the state of a LED as well as two equivalent electrical
diagrams: port 2 is equivalent to a controlled voltage source that can provide either 0
volts or 5 volts.

To control a LED, the uploaded program on the microcontroller must define the digital
port 2 as output (see Challenge sheet “Light up a LED”).
When the program flips the value of port 2 to HIGH, the LED switches on.
When the program switches the value of this port to LOW, the LED switches off.

The resistance is used to limit the current that protects both the microcontroller and the
LED (which also has a critical current beyond which it smokes). If the LED is mounted in
the opposite sense, it will never switch on (it is a diode).

pinMode(2, OUTPUT) ; // defines digital port 2 as output
 // put this instruction into the setup()

digitalWrite(2, HIGH) ; // switches the state of digital port 2 to HIGH (5 V)
digitalWrite(2, LOW) ; // switches the state of digital port 2 to LOW (0 V)

1
1

5
5

10
10

15
15

20
20

25
25

30
30

35
35

40
40

45
45

50
50

55
55

60
60

A A

B B

C C

D D

E E

F F

G G

H H

I I

J J

13 12 11 10

9 8 7 6 5 4 3 2

L

5V A
0

ANALOG IN

A
R

E
F

1

G
N

D

TX
RX

R
E

S
E

T

3V
3

A
1

A
2

A
3

A
4

A
5

V
IN

G
N

D

G
N

D

DIGITAL (PWM=)

Arduino TM

IO
R

E
F

IC
S

P

ICSP2

ON

POWER

01
TX

0

R
X

0RESET

port 2

GND

LOW / HIGH
0 V / 5 V

2
www.opentp.fr « la physique autrement », Université Paris Saclay

1

Inputs & Outputs
Use a switch

ASSOCIATED SHEETS

DIGITAL INPUTS
How the Arduino board detects a 5 V signal

KNOWLEDGE

A digital input is a voltmeter that can only read two values LOW (~ GND, 0 V), and the
value HIGH (~ 5 V).

The Arduino board UNO has 14 digital ports (called DIGITAL on the board), numbered
from 0 to 13. Each of the ports can be declared as being an input in the microcontroller
program. The ports 0 and 1 are reserved for serial communication, you should not use
them. The GND port is the ground of the board (0 V).

13 12 11 10

9 8 7 6 5 4 3 2
L

5V A
0

ANALOG IN

A
R

E
F

1

G
N

D

TX
RX

R
E

S
E

T

3V
3

A
1

A
2

A
3

A
4

A
5

V
IN

G
N

D

G
N

D

DIGITAL (PWM=)

Arduino TM

IO
R

E
F

IC
S

P

ICSP2

ON

POWER

01
TX

0

R
X

0RESET

When a digital port is declared as input, the state of the port can be read by the Arduino
board (HIGH or LOW) and that value can be used in the program to launch this or that
action.

To determine the state of a digital input (HIGH or LOW), the board measures the value of
the voltage applied to that port. The voltages that are inferior to around 3 V will be read as
LOW, the voltages that are superior will be read as HIGH.

You must avoid intermediary voltages, which risk giving random results.

A non-connected digital entry will float (with no affected voltage its state will remain
undetermined). The reading of this port can give almost any result.

A voltage superior to 5.5 V can destroy the Arduino board.

www.opentp.fr « la physique autrement », Université Paris Saclay

KNOWLEDGE  —  DIGITAL INPUTS

2

Usage examples

Programming

Here is a simple setup to read the state of a switch (open or closed) as well as two
equivalent electrical diagrams: the port 7 is equivalent to a voltmeter that can only
measure 0 volts or 5 volts.

pinMode(7, INTPUT) ; // defines digital port 7 as input
 // put this instruction into the setup()

buttonstate = digitalRead(7) ; // retuns the state of input 7 (true or false,
 // 0 or 1, HIGH or LOW) and attributes it to the buttonState variable
 // (used here as an example).

1
1

5
5

10
10

15
15

20
20

25
25

30
30

35
35

40
40

45
45

50
50

55
55

60
60

A A

B B

C C

D D

E E

F F

G G

H H

I I

J J

13 12 11 10

9 8 7 6 5 4 3 2

L

5V A
0

ANALOG IN

A
R

E
F

1

G
N

D

TX
RX

R
E

S
E

T

3V
3

A
1

A
2

A
3

A
4

A
5

V
IN

G
N

D

G
N

D

DIGITAL (PWM=)

Arduino TM

IO
R

E
F

IC
S

P

ICSP2

ON

POWER

01
TX

0

R
X

0RESET

port 7

GND

port 5V

5 V

V

When the switch is open, port 7 and the ground are connected and are at the same
electrical potential because no current is circulating: the board measures 0 V (LOW).
When the switch is closed, the potential of the input 7 rises to 5 V (HIGH) and a current of
0.5 mA is circulating between the 5V port and the GND port, which poses no problem.

The resistor ensures that the measured voltage on port 7 is indeed that of the GND port
when the switch is open. Without this resistance (called pull-down), the port 7 would be
floating and its measurement would be indeterminate.

R = 10 kilohms

Be careful: if port 7 is declared by error to be the output instead of input in the program,
there is a risk of a short circuit when the switch is closed

www.opentp.fr « la physique autrement », Université Paris Saclay

The Arduino board Uno has 6 analog inputs, A0, A1,.. , A5.
An analog input is a voltmeter: the board measures the difference in potential between
the wire that connects the analog input and the potential of the GND port.

1

Inputs & Outputs
Measure voltage

ASSOCIATED SHEETS

ANALOG INPUTS
How the Arduino board measures

electrical voltage

KNOWLEDGE

That being said, the microcontroller can only work with numbers; it will therefore convert
the measured voltage into a number. It is the work of the analog/digital converter called
“ADC”. The ADC of the Arduino board works on 10 bits: It accepts as input a voltage
comprised of between 0 V and Vref (a reference voltage) and supplies the microcontroller
with a number comprised of between 0 and 1023 (that is to say 210 - 1).

 – For a voltage of 0V (or less), the ADC returns the value 0.
 – For a voltage of Vref (or more), the ADC returns the value 1023.
 – For an intermediary voltage, the ADC returns an integer of between 0 and 1023

following a linear scaling law.

The Vref is 5 V by default but this value can be changed in the program (see the instruction
“analogReference” on the arduino.cc site for more details).

13 12 11 10

9 8 7 6 5 4 3 2

L
5V A

0

ANALOG IN

A
R

E
F

1

G
N

D

TX
RX

R
E

S
E

T

3V
3

A
1

A
2

A
3

A
4

A
5

V
IN

G
N

D

G
N

D

DIGITAL (PWM=)

Arduino TM

IO
R

E
F

IC
S

P

ICSP2

ON

POWER

01
TX

0

R
X

0RESET

Be careful, a voltage superior to 5.5 V can destroy the Arduino board.

www.opentp.fr « la physique autrement », Université Paris Saclay

KNOWLEDGE  —  ANALOG INPUTS

2

1
1

5
5

10
10

15
15

20
20

25
25

30
30

35
35

40
40

45
45

50
50

55
55

60
60

A A

B B

C C

D D

E E

F F

G G

H H

I I

J J

13 12 11 10

9 8 7 6 5 4 3 2

L

5V A
0

ANALOG IN

A
R

E
F

1

G
N

D
TX
RX

R
E

S
E

T

3V
3

A
1

A
2

A
3

A
4

A
5

V
IN

G
N

D

G
N

D

DIGITAL (PWM=)

Arduino TM

IO
R

E
F

IC
S

P

ICSP2

ON

POWER

01
TX

0

R
X

0RESET

Programming

The setup above allows you to measure a voltage modified by a potentiometer comprised
of between zero and five volts. This setup is equivalent to a voltage divider (see the
equivalent diagram).

int sensorValue ; // integer type variable
float VoltageInVolts ; // decimal type variable

sensorValue = analogRead(A0); // analogRead(A0) is the function that
 // returns an integer of between 0 and 1023, corresponding
 // to the voltage applied to the port A0 ;
 // sensorValue is an integer comprised between 0 and 1023.

VoltageInVolts = analogRead(A0) * 5.0 / 1023.0 ;
 // converts the value read by the ADC in volts,
 // supposing that Vref is 5 V (the default value).

port A0

GND

port 5V

5 V

V

Usage examples

www.opentp.fr « la physique autrement », Université Paris Saclay

An analog output is a controllable voltage source. The Arduino board does not have a real
analog output capable of producing a voltage value chosen by the user. Certain digital
ports can, however, simulate a digital output by using the PWM (Pulse Width Modulation)
technique: it concerns ports 3, 5, 6, 9, 10, and 11 (marked with a ~ on the board).

1

Digital Outputs
Control the lights

ASSOCIATED SHEETS

PWM OUTPUTS
Understand “pseudo analog” outputs

KNOWLEDGE

13 12 11 10

9 8 7 6 5 4 3 2

L

5V A
0

ANALOG IN

A
R

E
F

1

G
N

D

TX
RX

R
E

S
E

T

3V
3

A
1

A
2

A
3

A
4

A
5

V
IN

G
N

D

G
N

D

DIGITAL (PWM=)

Arduino TM

IO
R

E
F

IC
S

P
ICSP2

ON

POWER

01
TX

0

R
X

0RESET

These ports can switch rapidly between their LOW (0 V) state and HIGH (5 V) states. By
controlling the relationship between the time spent in the HIGH state compared to the
time spent in the LOW state, the Arduino board can vary the average voltage value on the
ports between 0 and 5 volts. The diagram below illustrates the principal representing the
variations over time of the voltage of port 3 using the PWM output for different required
voltages.

5 V

0 V

100 % of cycle – analogWrite(3, 255)
average voltage = 5 V

5 V

0 V

75 % of cycle – analogWrite(3, 191)
average voltage = 3,75 V

5 V

0 V

50 % of cycle – analogWrite(3, 127)
average voltage = 2,5 V

5 V

0 V

25 % of cycle – analogWrite(3, 64)
average voltage = 1,25 V

5 V

0 V

0 % of cycle – analogWrite(3, 0)
average voltage = 0 V

time

www.opentp.fr « la physique autrement », Université Paris Saclay

KNOWLEDGE  —  PWM OUTPUTS

2

Usage examples

Programming

Be careful: Unlike a real digital output, the PWM does not deliver a constant voltage but a
voltage that is constantly oscillating. For certain applications, a PWM output is perfectly
adequate; for example, to power a motor or to vary the intensity of a LED. The following
circuit allows one to vary the power of a LED based on the value required at port 3 defined
by the program as analog output.

If one needs a real continuous analog voltage, one must install a low-pass filter that
will eliminate the high frequencies and only keep the average value (the frequency of
oscillation of the PWM output is around 500 to 1000 Hz depending on the ports).

int pwmValue ; // integer type variable
float VoltageInVolts = 3.1 ; // decimal type variable
pinMode(3, OUTPUT) ; // defines digital port3 as output
 // put this instruction into the setup()

analogWrite(3, 0) ; // Creates an average voltage of 0 V on port 3
analogWrite(3, 127) ; // Creates an average voltage of 2.5 V on port 3
analogWrite(3, 255) ; // Creates an average voltage of 5 V on port 3

pwmValue = VoltageInVolts * 255 / 5 ;

analogWrite(3, pwmValue) ; // Creates an average voltage on port 3
 // of value VoltageEnVolts

port 3

GND

PWM
0 V – 5 V

1
1

5
5

10
10

15
15

20
20

25
25

30
30

35
35

40
40

45
45

50
50

55
55

60
60

A A

B B

C C

D D

E E

F F

G G

H H

I I

J J

13 12 11 10

9 8 7 6 5 4 3 2

L

5V A
0

ANALOG IN

A
R

E
F

1

G
N

D

TX
RX

R
E

S
E

T

3V
3

A
1

A
2

A
3

A
4

A
5

V
IN

G
N

D

G
N

D

DIGITAL (PWM=)

Arduino TM

IO
R

E
F

IC
S

P

ICSP2

ON

POWER

01
TX

0

R
X

0RESET

The board can control the ratio of the PWM cycle with a sensitivity of 8 bits: the
command in the “analogWrite” instruction is an integer of between 0 and 255 (= 28 - 1),
corresponding to an average voltage of between 0 and 5 volts.

www.opentp.fr « la physique autrement », Université Paris Saclay

VARIABLES

The arduino.cc includes the instructions that the board can understand (https://www.
arduino.cc/en/Reference/HomePage). We advise you to go to the site if you need to; this
sheet is by no means exhaustive. Do not hesitate to consult the available examples in the
File menu of the Arduino IDE software either

1

Arduino software

ASSOCIATED SHEETS

PROGRAMMING
Useful instructions

KNOWLEDGE

The variables are given a name. They must be declared by specifying the type of data
that they will store. During the declaration, the variables can be initialized but it is not
obligatory. Some examples:

int MyVariable1 ; // declares the variable “MyVariable1” as type “int”
int MyVariable2 = 0 ; // declares the variable “MyVariable2” as type “int”
 // and initializes the value as 0

int integer1 ; // integer, from -32768 to 32767
unsigned int toto ; // positive integer, from 0 to 65535
float measure1 = 0.0 ; // real number
boolean flag = true ; // boolean, true or false

int tableauInt[6] ; // integer array with 6 elements, numbered 0 to 5

The variables can only be used in the procedure in which they are declared. For a
variable to be defined in a global manner in the whole program, you must declare it at the
beginning of the program before the setup() procedure.

INPUTS AND OUTPUTS

The digital ports used in the program must be declared as inputs or as outputs in the
setup() procedure:

pinMode(3, OUTPUT); // declares digital port 3 as output
pinMode(4, INPUT); // declares digital port 4 as input

To define the state of a digital output:

digitalWrite(3, HIGH); // imposes the HIGH value(5 volts) to port 3
digitalWrite(3, LOW); // imposes the LOW value(0 volts) to port 3

www.opentp.fr « la physique autrement », Université Paris Saclay

KNOWLEDGE  —PROGRAMMING

2

For a pseudo-analog output (digital in PWM mode):

analogWrite(6,0) ; // imposes the value 0 to port 6 (0 volts)
analogWrite(6,255) ; // imposes the value 255 to port 6 (5 volts)
analogWrite(6,100) ; // imposes the value 100 to port 6 (average of 2 volts)

To read a digital input:

flag = digitalRead(4) ; // reads the HIGH or LOW value of digital port
 // and attributes the variable flag

To read an analog input:

Measure1 = analogRead(A5) ; // measures the voltage on port A5
 // an integer between 0 and 1023

USB CABLE COMMUNICATION

You must define the transfer speed in the setup() function

Serial.begin(9600); // initialises the serial port, speed of 9600 bauds

The board can then send information to the computer:

Serial.print("Measure: "); // the board sends the text
Serial.print(variable) ; // the board sends the value of the variable
Serial.println("toto"); // the board sends the text
 // and adds a carriage return character

USEFUL INSTRUCTIONS

delay(100) ; // wait in milliseconds
unsigned long time1 = millis() ; // measures the time in millisecondes
unsigned long time2 = micros() ; // measures the time in microsecondes

A for loop (this loop executes 100 times; the index variable varies between 0 and 99,
increasing by one unit for each iteration):

for (int index=0; index < 100; index++){
 // instructions for the loop to execute 100 times
}

A while loop (in the example, the loop executes as long as the index variable is less than 3):

while (index < 3) {
 // instructions for the loop to execute as long as index < 3}

An if condition (here on the value of the buttonState variable of boolean type):

if (buttonState == HIGH) {
 // instructions to write here if buttonState equals HIGH;
}
else {
 // instructions to write here if buttonState equals LOW;
}

www.opentp.fr « la physique autrement », Université Paris Saclay

	EN couverture Arduino 20180323
	EN fiche savoir 01 - carte Arduino 20180323
	EN fiche savoir 02 - Logiciel Arduino IDE 20180323
	EN fiche savoir 03 - Entrees Sorties 20180323
	EN fiche savoir 04 - sorties numeriques 20180323
	EN fiche savoir 05 - entrees numeriques 20180323
	EN fiche savoir 06 - entrees analogiques 20180323
	EN fiche savoir 07 - PWM 20180323
	EN fiche savoir 09 - programmation 20190729

